and take

$$X_0 = \frac{1}{2} A^* = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}.$$

Here, formula (17) is used to obtain:

$$\begin{split} X_1 &= \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} \left\{ 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} \right\} \\ &= \frac{1}{4} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ -1 & 1 \end{pmatrix}, \\ X_2 &= \frac{1}{16} \begin{pmatrix} 10 & 5 \\ 5 & 10 \\ -5 & 5 \end{pmatrix}, \\ X_3 &= \frac{1}{256} \begin{pmatrix} 170 & 85 \\ 85 & 170 \\ -85 & 85 \end{pmatrix}, \quad \text{etc.}, \end{split}$$

converging to:

$$A^{+} = \frac{1}{3} \begin{pmatrix} 2 & 1\\ 1 & 2\\ -1 & 1 \end{pmatrix}.$$

Technion, Israel Institute of Technology Haifa, Israel

G. SCHULZ, "Iterative Berechnung der reziproken Matrix," Z. Angew. Math. Mech.
v. 13, 1933, pp. 57-59.
R. PENROSE, "A generalized inverse for matrices," Proc. Cambridge Philos. Soc., v. 51,
1955, pp. 406-413. MR 16, 1082.
A. BEN-ISRAEL & A. CHARNES, "Contributions to the theory of generalized inverses,"
J. Soc. Indust. Appl. Math., v. 11, 1963, pp. 667-699.
W. DÜCK, "Fehlerabschätzungen für das Iterationsverfahren von Schulz zur Bestimmung der Inversen einer Matrix," Z. Angew. Math. Mech., v. 40, 1960, pp. 192-194. MR 22 # 3102.
A. S. HOUSEHOLDER, Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964

1964.

## A Note on the Maximum Value of Determinants over the Complex Field

## By C. H. Yang

The purpose of this note is to extend a theorem on determinants over the real field to the corresponding theorem over the complex field.

**THEOREM.** Let D(n) be an nth order determinant with complex numbers as its entries. Then

(1) 
$$\operatorname{Max}_{|a_{jk}| \leq K} |D(n)| = \operatorname{Max}_{|a_{jk}| = K} |D(n)|.$$

Received June 5, 1964. Revised December 8, 1964.

In other words, D(n) is a function of  $n^2$  variables  $a_{jk}$  which vary over the bounded and closed domain  $\overline{D}$ :  $\{|a_{jk}| \leq K\}$ ; hence this function is bounded and attains its maximum value on the boundary of the domain  $\overline{D}$ .

*Proof.* Let  $a_{jk} = r_{jk}e^{i\theta_{jk}}$  and  $A_{jk} = R_{jk}e^{i\phi_{jk}} =$  the co-factor of  $a_{jk}$ , where  $K \ge r_{jk} \ge 0$  and  $R_{jk} \ge 0$ . Then, expanding by the *j*th row, we have

(2)  
$$|D(n)| = \left|\sum_{k=1}^{n} a_{jk}A_{jk}\right| = \left|\sum_{k=1}^{n} r_{jk}R_{jk} e^{i(\theta_{jk} + \phi_{jk})}\right|$$
$$\leq \sum_{k=1}^{n} r_{jk}R_{jk} \leq \sum_{k=1}^{n} KR_{jk} = D'(n),$$

where D'(n) is the *n*th order determinant whose entries are

(3) 
$$a'_{jk} = \begin{cases} a_{jk}, & \text{if } r_{jk} = K \text{ and } \theta_{jk} + \phi_{jk} \equiv 0 \pmod{2\pi}, \\ Ke^{-i\phi_{jk}}, & \text{if } r_{jk} < K \text{ or } \theta_{jk} + \phi_{jk} \not\equiv 0 \pmod{2\pi}. \end{cases}$$

By applying the same process to the other rows, we obtain a determinant  $D^*(n)$  whose entries  $|a_{jk}^*| = K$  and  $|D^*(n)| \ge |D(n)|$ . Hence,  $\operatorname{Max}_{|a_{jk}| \le K} |D(n)| \le \operatorname{Max}_{|a_{jk}| = K} |D(n)|$ ; thus the proof of the theorem can be completed since the reverse inequality is trivial.

50 Mohigan Drive Oneonta, New York

## On the Numerical Solution of y' = f(x, y) by a Class of Formulae Based on Rational Approximation

## By John D. Lambert and Brian Shaw

1. Introduction. Most finite difference formulae in common usage for the numerical solution of first-order differential equations are based on polynomial approximation. Two exceptions are the formulae based on exponential approximation proposed by Brock and Murray [1], and the formulae of Gautschi [2] which are derived from trigonometric polynomials. The use of rational functions as approximants has been studied by many authors, including Remes [3], Maehly [4] and Stoer [5], but the main concern of most of this work has been the direct approximation of a given function. Algorithms for interpolation based on rational functions have been proposed by Wynn [6], and methods for numerical integration and differentiation based on Padé approximation have been studied by Kopal [7]. It is the purpose of the present paper to derive a class of formulae, based on rational approximation, for the numerical solution of the initial value problem

(1) 
$$y' = f(x, y), \quad y(x_0) = y_0.$$

The formulae proposed give exact results when the theoretical solution of (1) is a rational function of a certain degree, just as many of the classical difference formulae

Received December 10, 1964.